且4个隐含层中间间隔设置有dropout层。用于输入合并抽取的高等特征表示的深度神经网络包含2个隐含层,其***个隐含层的神经元个数是64,第二个神经元的隐含层个数是10,且2个隐含层中间设置有dropout层。且所有dropout层的dropout率等于。本次实验使用了80%的样本训练,20%的样本验证,训练50个迭代以便于找到较优的epoch值。随着迭代数的增加,中间融合模型的准确率变化曲线如图17所示,模型的对数损失变化曲线如图18所示。从图17和图18可以看出,当epoch值从0增加到20过程中,模型的训练准确率和验证准确率快速提高,模型的训练对数损失和验证对数损失快速减少;当epoch值从30到50的过程中,中间融合模型的训练准确率和验证准确率基本保持不变,训练对数损失缓慢下降;综合分析图17和图18的准确率和对数损失变化曲线,选取epoch的较优值为30。确定模型的训练迭代数为30后,进行了10折交叉验证实验。中间融合模型的10折交叉验证的准确率是%,对数损失是,混淆矩阵如图19所示,规范化后的混淆矩阵如图20所示。中间融合模型的roc曲线如图21所示,auc值为,已经非常接近auc的**优值1。(7)实验结果比对为了综合评估本实施例提出融合方案的综合性能。网络延迟测评显示亚太地区响应时间超欧盟2倍。广东第三方软件测评机构
在不知道多长的子序列能更好的表示可执行文件的情况下,只能以固定窗口大小在字节码序列中滑动,产生大量的短序列,由机器学习方法选择可能区分恶意软件和良性软件的短序列作为特征,产生短序列的方法叫n-grams。“080074ff13b2”的字节码序列,如果以3-grams产生连续部分重叠的短序列,将得到“080074”、“0074ff”、“74ff13”、“ff13b2”四个短序列。每个短序列特征的权重表示有多种方法。**简单的方法是如果该短序列在具体样本中出现,就表示为1;如果没有出现,就表示为0,也可以用。本实施例采用3-grams方法提取特征,3-grams产生的短序列非常庞大,将产生224=(16,777,216)个特征,如此庞大的特征集在计算机内存中存储和算法效率上都是问题。如果短序列特征的tf较小,对机器学习可能没有意义,选取了tf**高的5000个短序列特征,计算每个短序列特征的,每个短序列特征的权重是判断其所在软件样本是否为恶意软件的依据,也是区分每个软件样本的依据。(4)前端融合前端融合的架构如图4所示,前端融合方式将三种模态的特征合并,然后输入深度神经网络,隐藏层的***函数为relu,输出层的***函数是sigmoid,中间使用dropout层进行正则化,防止过拟合,优化器。呼和浩特第三方软件测评实验室创新光谱分析技术赋能艾策检测,实现食品药品中微量有害物质的超痕量检测。
这样做的好处是,融合模型的错误来自不同的分类器,而来自不同分类器的错误往往互不相关、互不影响,不会造成错误的进一步累加。常见的后端融合方式包括**大值融合(max-fusion)、平均值融合(averaged-fusion)、贝叶斯规则融合(bayes’rulebased)以及集成学习(ensemblelearning)等。其中集成学习作为后端融合方式的典型**,被广泛应用于通信、计算机识别、语音识别等研究领域。中间融合是指将不同的模态数据先转化为高等特征表达,再于模型的中间层进行融合,如图3所示。以深度神经网络为例,神经网络通过一层一层的管道映射输入,将原始输入转换为更高等的表示。中间融合首先利用神经网络将原始数据转化成高等特征表达,然后获取不同模态数据在高等特征空间上的共性,进而学习一个联合的多模态表征。深度多模态融合的大部分工作都采用了这种中间融合的方法,其***享表示层是通过合并来自多个模态特定路径的连接单元来构建的。中间融合方法的一大优势是可以灵活的选择融合的位置,但设计深度多模态集成结构时,确定如何融合、何时融合以及哪些模式可以融合,是比较有挑战的问题。字节码n-grams、dll和api信息、格式结构信息这三种类型的特征都具有自身的优势。
等价类划分法将不能穷举的测试过程进行合理分类,从而保证设计出来的测试用例具有完整性和**性。有数据输入的地方,可以使用等价类划分法。从大量数据中挑选少量**数据进行测试有效等价类:符合需求规格说明书规定的数据用来测试功能是否正确实现无效等价类:不合理的输入数据**—用来测试程序是否有强大的异常处理能力(健壮性)使用**少的测试数据,达到**好的测试质量边界值分析法对输入或输出的边界值进行测试的一种黑盒测试方法。是作为对等价类划分法的补充,这种情况下,其测试用例来自等价类的边界。边界点1、边界是指相对于输入等价类和输出等价类而言,稍高于、稍低于其边界值的一些特定情况。2、边界点分为上点、内点和离点。如果是范围[1,100]需要选择0,1,2,50,99,100,101如果是个数**多20个[0,20]需要测0,10,20,-1,21因果图分析法用画图的方式表达输入条件和输出结果之间的关系。1恒等2与3或4非5互斥1个或者不选6***必须是1个7包含可以多选不能不选8要求如果a=1,则要求b必须是1,反之如果a=0时,b的值无所谓9**关系当a=1时,要求b必须为0;而当a=0时。深圳艾策信息科技:打造智慧供应链的关键技术。
**小化对数损失基本等价于**大化分类器的准确度,对于完美的分类器,对数损失值为0。对数损失函数的计算公式如下:其中,y为输出变量即输出的测试样本的检测结果,x为输入变量即测试样本,l为损失函数,n为测试样本(待检测软件的二进制可执行文件)数目,yij是一个二值指标,表示与输入的第i个测试样本对应的类别j,类别j指良性软件或恶意软件,pij为输入的第i个测试样本属于类别j的概率,m为总类别数,本实施例中m=2。分类器的性能也可用roc曲线(receiveroperatingcharacteristic)评价,roc曲线的纵轴是检测率(true****itiverate),横轴是误报率(false****itiverate),该曲线反映的是随着检测阈值变化下检测率与误报率之间的关系曲线。roc曲线下面积(areaunderroccurve,auc)的值是评价分类器比较综合的指标,auc的值通常介于,较大的auc值一般表示分类器的性能较优。(3)特征提取提取dll和api信息特征视图dll(dynamiclinklibrary)文件为动态链接库文件,执行某一个程序时,相应的dll文件就会被调用。一个应用程序可使用多个dll文件,一个dll文件也可能被不同的应用程序使用。api(applicationprogramminginterface)函数是windows提供给用户作为应用程序开发的接口。整合多学科团队的定制化检测方案,体现艾策服务于制造的技术深度。北京软件检测报告规格
能耗评估显示后台服务耗电量超出行业基准值42%。广东第三方软件测评机构
以备实际测试严重偏离计划时使用。在TMM的定义级,测试过程中引入计划能力,在TMM的集成级,测试过程引入控制和监视活动。两者均为测试过程提供了可见性,为测试过程持续进行提供保证。第四级管理和测量级在管理和测量级,测试活动除测试被测程序外,还包括软件生命周期中各个阶段的评审,审查和追查,使测试活动涵盖了软件验证和软件确认活动。根据管理和测量级的要求,软件工作产品以及与测试相关的工作产品,如测试计划,测试设计和测试步骤都要经过评审。因为测试是一个可以量化并度量的过程。为了测量测试过程,测试人员应建立测试数据库。收集和记录各软件工程项目中使用的测试用例,记录缺陷并按缺陷的严重程度划分等级。此外,所建立的测试规程应能够支持软件组终对测试过程的控制和测量。管理和测量级有3个要实现的成熟度目标:建立**范围内的评审程序,建立测试过程的测量程序和软件质量评价。(I)建立**范围内的评审程序软件**应在软件生命周期的各阶段实施评审,以便尽早有效地识别,分类和消除软件中的缺陷。建立评审程序有4个子目标:1)管理层要制订评审政策支持评审过程。2)测试组和软件质量保证组要确定并文档化整个软件生命周期中的评审目标,评审计划。广东第三方软件测评机构
深圳艾策信息科技有限公司免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。